

Practical Electron Optics of

EEL Spectrometers &

Imaging Energy Filters

Heiko Müller

CEOS GmbH, Englerstr. 28, D-69126 Heidelberg, Germany

Imaging Energy Filters today are versatile tools for:

- Electron Energy Loss Spectroscopy in (S)TEM mode
- Zero-Loss Filtering in life science
- Energy-Filtered Imaging (Electron Spectroscopic Imaging)
- Energy-Filtered Diffraction
- STEM Spectrum Imaging (EELS Data Cube)
- Momentum-Resolved Spectroscopy (ωq-EELS)
- Energy-Filtered 4D STEM (STEM Data Tesseract)
- Event-based and correlated data acquisition techniques

WS1: Electron optics and new approaches for spectroscopy in the TEM

EELS Path of Rays:

EFTEM Path of Rays:

WS1: Electron optics and new approaches for spectroscopy in the TEM

WS1: Electron optics and new approaches for spectroscopy in the TEM

WS1: Electron optics and new approaches for spectroscopy in the TEM

CEOS

Corrected Electron Optical
Systems GmbH

Electrons traveling in homogenious magnetic field:

- electrons travel on circles
- different energies travel on different radii
- deflection cause energy dispersion

Electrons traveling in homogenious magnetic field:

- electrons travel on circles
- different energies travel on different radii
- deflection causes energy dispersion
- electrons in xz-section are focussed toward optic axis
- focussing in ±x is asymmetric => second-order aberrations

Optics of a homogeneous sector magnet:

$$\alpha, \beta$$
 : coordinates in filter entrace aperture $\kappa = \frac{\Delta E}{E_0}$: chromatic parameter

$$x(\alpha, \beta, \kappa) = \alpha x_{\alpha} + \kappa x_{\kappa}$$
$$y(\alpha, \beta, \kappa) = \beta y_{\beta}$$

$$U^{\star} = U \left(1 + \varepsilon U \right) \qquad \varepsilon = \frac{|e|}{2m_e c^2} \qquad \Lambda = \frac{1 + 2\varepsilon U}{1 + \varepsilon U}$$

$$x'' + \frac{1}{R^2} x = -\frac{\Lambda}{2R} \frac{\Delta E}{E_0}$$
 $\frac{1}{R} = -\sqrt{\frac{|e|}{2m_e U^*}} \Psi_{1s}$

Optics of a homogeneous sector magnet:

$$x'' + \frac{1}{R^2} x = -\frac{\Lambda}{2R} \frac{\Delta E}{E_0}$$

$$\frac{1}{R} = -\sqrt{\frac{|e|}{2m_e U^{\star}}} \,\Psi_{1s}$$

Dispersion ray:

$$x_{\kappa} = -\frac{\Lambda R}{2} \left(1 - \cos \left(\frac{z}{R} \right) \right)$$

$$x'_{\kappa} = -\frac{\Lambda}{2} \sin\left(\frac{z}{R}\right)$$

for 300kV:

$$\frac{d\vartheta}{dE} = -\frac{\Lambda}{2E} \approx 2.0 \, \frac{\mu rad}{eV}$$

for 60kV:

$$\frac{d\vartheta}{dE} = -\frac{\Lambda}{2E} \approx 8.8 \, \frac{\mu rad}{eV}$$

Pre-slit raypath of simple 90° sector magnet:

Pre-slit raypath of real spectrometer:

Pre-slit raypath of real spectrometer:

WS1: Electron optics and new approaches for spectroscopy in the TEM

Magn. Field (Dipole Strength):

$$B = -\Psi_{1s} = \frac{1}{\eta R}$$

Quadrupole Strength:
$$\Psi_{2s} \ = \ \frac{1}{R} \, \xi \, \Psi_{1s} \; , \quad \xi = \frac{R}{D} \tan{(\vartheta)}$$

Hexapole Strength:

$$\Psi_{3s} = \frac{1}{12R^2} \left(16 \, \xi^2 - \xi \right) \, \Psi_{1s}$$

Dodecapole for correction of spectrum aberrations (NI):

Dodecapole for correction of spectrum aberrations (NI):

Aberrations a energy-selection plane:

 α, β : coordinates in filter entrace aperture

$$\kappa = \frac{\Delta E}{E_0}$$
 : chromatic parameter

Rank 1:

$$x^{(1)}(\alpha, \beta, \kappa) = \alpha x_{\alpha} + \beta x_{\beta} + \kappa x_{\kappa}$$
$$y^{(1)}(\alpha, \beta, \kappa) = \beta y_{\beta}$$

mirror symmetry: y <-> -y

Rank 2:

$$x^{(2)}(\alpha, \beta, \kappa) = \alpha^2 x_{\alpha\alpha} + \beta^2 x_{\beta\beta} + \alpha \beta x_{\alpha\beta} + \alpha \kappa x_{\alpha\kappa}$$

Rank 3:

$$x^{(3)}(\alpha, \beta, \kappa) = \alpha^3 x_{\alpha\alpha\alpha} + \alpha\beta^2 x_{\alpha\beta\beta} + \alpha^2 \beta x_{\alpha\alpha\beta} + \beta^3 x_{\beta\beta\beta}$$

Aberrations a energy-selection plane:

 α, β : coordinates in filter entrace aperture

$$\kappa = \frac{\Delta E}{E_0}$$
 : chromatic parameter

Rank 1: $(3 \times \Psi_{2s}, 1 \times \Psi_{2c})$

$$x^{(1)}(\alpha, \beta, \kappa) = \alpha x_{\alpha} + \beta x_{\beta} + \kappa x_{\kappa}$$
$$y^{(1)}(\alpha, \beta, \kappa) = \beta y_{\beta}$$

mirror symmetry: y <-> -y

Rank 2: $(2 \times \Psi_{3s}, 1 \times \Psi_{3c}, ??)$

$$x^{(2)}(\alpha, \beta, \kappa) = \alpha^2 x_{\alpha\alpha} + \beta^2 x_{\beta\beta} + \alpha \beta x_{\alpha\beta} + \alpha \kappa x_{\alpha\kappa}$$

Rank 3: $(2 \times \Psi_{4s}, 2 \times \Psi_{4c})$

$$x^{(3)}(\alpha, \beta, \kappa) = \alpha^3 x_{\alpha\alpha\alpha} + \alpha\beta^2 x_{\alpha\beta\beta} + \alpha^2 \beta x_{\alpha\alpha\beta} + \beta^3 x_{\beta\beta\beta}$$

$$E(x, \gamma, \Delta E) = \Delta E + \sum_{r \ge 0} \sum_{\substack{m=0\\n=r-m}}^{r} E_{nm} x^n \gamma^m,$$

CEFID Isochromaticity at 200kV

ESI 12mm 11x11

Focussed but spectrum inclination not corrected:

Focussed and spectrum inclination corrected:

WS1: Electron optics and new approaches for spectroscopy in the TEM

quadrupole potential:

$$\psi_2 = \underline{2\Psi_{2s}xy}$$

hexapole potential:

$$\psi_3 = \Psi_{3s} \left(y^3 + 3x^2 y \right)$$

shift of optic axis:

$$\psi = \Psi_{3s} \left(y^3 + 3(x + \Delta x)^2 y \right)$$

$$\approx \Psi_{3s} \left(y^3 + 3x^2 y \right) + 6\Delta x \Psi_{3s} xy$$

shift-induced quadruple strength:

$$\psi_{2s} = 3\Delta x \Psi_{3s}$$

WS1: Electron optics and new approaches for spectroscopy in the TEM

CEOS Corrected Electron Optical Systems GmbH

WS1: Electron optics and new approaches for spectroscopy in the TEM

+1mA

MP1-2y +2.5mA

WS1: Electron optics and new approaches for spectroscopy in the TEM

WS1: Electron optics and new approaches for spectroscopy in the TEM

EELS Alignment

Adjustable spectrum height:

EELS: Three degrees of freedom (Quadrupoles)

- * Dispersion at detector (EELS magnification)
- * Spectrum height (defocus in y-direction)
- * Spectrum focus (SX10)

Momentum resolved EELS:

- * focus entrance aperture at detector in y-direction
 - x: Energy coordinate (dispersion scale)
 - y: conjugated to entrance aperture (e.g. momentum in y-direction)
- * momentum space in projected (averaged) in x-direction and resolved in y-direction
 - => use slit-shpaed aperture to confine momentum in x-direction

ESI Alignment

Flexible post-magnification

alignment mask in entrance aperture

detector (TVIPS XF416)

Flexible post-magnification

alignment mask in entrance aperture

detector (TVIPS XF416)

Flexible post-magnification

alignment mask in entrance aperture

detector (TVIPS XF416)

WS1: Electron optics and new approaches for spectroscopy in the TEM

ESI: Correction of Dispersion and Distortions

Three first-rank degrees of freedom

"Quadruples"

Three second-order degrees of freedom

"Hexapoles"

Non-Linear Mapping of Entrance aperture onto Detector:

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} X_{00} \\ Y_{00} \end{pmatrix} + \begin{pmatrix} X_{10} & X_{01} \\ Y_{10} & Y_{01} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} X_{001} \\ Y_{001} \end{pmatrix} \Delta E + \begin{pmatrix} \Delta X(x, y, \Delta E) \\ \Delta Y(x, y, \Delta E) \end{pmatrix} (2)$$

with the non-linear term

$$\begin{pmatrix} \Delta X \\ \Delta Y \end{pmatrix} = \sum_{R>1} \sum_{k=0}^{R} \sum_{\substack{m=0 \ P-k-m}}^{R-k} \begin{pmatrix} X_{nmk} \\ Y_{nmk} \end{pmatrix} x^n \gamma^m \Delta E^k . \tag{3}$$

Dewarping

$$\vec{R}_{ij} = \sum_{r=0}^{R} d_{m}^{r} \sum_{\substack{m=0\\n=r-m}}^{r} {X_{nm} \choose Y_{nm}} i^{m} j^{m}$$

DPA

plane

Summary of Alignment Strategy:

- correct ESI dispersion

ALL: focus NI aberrations at slit edge (CEFID NI procedure)

ESI: correct dipersion and distortions (CEFID DACA procedure)

EELS: correct spectrum shape and dipersion (CEFID EELS procedure)

PNDetector

WS1: Electron optics and new approaches for spectroscopy in the TEM

Efforts spend by CEOS:

- state-of-the-art optics
- simple semi-automatic alignment
- stable and reproducible settings
- flexible detector interfaces
- open interfaces (interoperability)
- open-source software platfrom (except for some device interfaces

e.g. XF416R

e.g. ELA[CEOS GmbH 2025-08-31, HM]