Basics of daily corrector-tuning

Peter Hartel

- Research & Development -Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg

Principle remarks

Daily corrector alignment

- Is fast and fine-tuning against hysteresis of magnetic elements and thermal drift.
 - => If possible, prepare the microscope the evening before (HT, mode, sample)
- Is never a complete realignment of the corrector.
- Timeconsuming alignments indicate:
 - Bad alignment files
 - Broken hardware
 - Tuning beyond requirements or beyond measuring accuracy
 - Omitted check points during the daily alignment procedure

Preparations

1. Load trustful alignment files and choose mode (HT, TEM/STEM)

ThermoFisher

Microscope and corrector(s)

User settings

JEOL

Corrector(s)

Check points STEM

2. Verify fix points and do basic pre-alignments

ThermoFisher	JEOL
- Eucentric focus	- Standard focus
- Normalise all	- Lens relaxation
	- Normalise correctors
	- Center beam in imaging mode:
- Leave diffraction, use AT L	JserBeamShift - Switch to ALIGN, use AT ShiftOL
	- Center the right aperture on last condenser lens
	(or on flat area on Ronchigram)
	- Adjust with AT BeamTilt:
- Rotation cent	er of objective - High tension center
	- Focus (in Ronchigram) with z-height on gold cluster sample
	- Select proper magnification (FoV around 500nm)

Check points TEM

2. Verify fix points and do basic pre-alignments

ThermoFisher	JEOL
- Eucentric focus	- Standard focus
- Normalise all	- Lens relaxation
	- Normalise correctors
	- Center beam with microscope Beam Shift
	- Find nice amorphous area
	- Check beam tilt pivot points (tiny changes if at all due to hysteresis of objective lens)
	- Adjust microscope BeamTilt w.r.t. specimen detail:
- Rotation center objective	- High tension center
	- Set slight underfocus with z-height
	- Select proper magnification (C1A1 range 12um)

Standard manual tuning loop for TEM and STEM

3. Use corrector UI's measurement procedures and auto-alignment tools

Iterate:

- Continuous C1A1 measurements (up to second order in STEM, up to first order in TEM)
 - Use auto-alignment tools while measurement is running
- Tableau measurements:fast -> standard (-> enhanced if needed)
 - Use auto-alignment tools after accepting tableau in state of correction

Cross-check with the instruction manual for details.

Concentrate on your experiment, not onto corrector tuning.

Stop iteration if experimental needs are fulfilled or measurement accuracy is limiting!

Good and bad continuous measurements

STEM: deconvolution

TEM: diffractogram analysis

Hints at continuous measurements

STEM: color code for size

TEM: color code for range "violation"

Hints at tableau measurements and in state of correction

TEM and STEM: color code for well measurable aberrations

Tableau

State of Correction

white: almost zero - no action

yellow: above measuring accuracy - correctable

STEM: Tuning towards experimental requirements

STEM: Probe state tool

Desired optical state = "zero" aberrations

- Reduce all aberrations sufficiently
- ← Phase plate with pi/2 circle and limiting aberration, considered aberrations selectable
- Microscope properties
- ← STEM setup
- ← Ideal and attainable probe size
- → Probe shape and most limiting aberration

Most important decision:

Good enough for desired experiment?

STEM: Tuning towards experimental requirements

STEM: Probe state tool

See help dialog behind "Info" button for detailed instruction and complete workflow description.

TEM: Tuning towards experimental requirements

TEM: PCTF tool

Desired optical state ≠ **zero aberrations**

- Shape phase contrast transfer function with round aberrations
- Reduce other aberrations sufficiently
- ← Phase plate, considered aberrations selectable

- ← Phase contrast transfer function
- Desired and attainable resolution
- Optimisation of spherical aberration C3

Most important decision:

Good enough for desired experiment?

TEM: Tuning towards experimental requirements

TEM: PCTF tool

total aberration = residual aberration + PCTF

See help dialog behind "Info" button for detailed instruction and complete workflow description.

Finetuning during experiment: Exported elements

Corrector GUI

- **→** Channels
 - → Exported elements

