Overview on commercial aberration correctors for TEM and STEM

represented by Felix Börrnert

Microscopy Conference 2025, Karlsruhe

Commercial players in the field

The early days

Commercial players in the field Today

" C_S correctors" — \square

2001

third-order axial geometric aberrations

second-generation Nion corrector retrofit to a VG HB 501

2011

fifth-order axial geometric aberrations

third-generation Nion corrector complete Nion UltraSTEM column

- quadrupole/octupole design
- ▶ 30–200 kV
- ▶ 60 pm at 200 kV

" C_S correctors" — HITACHI STEM

2015

third-order axial geometric aberrations

Hitachi HD-2700

- ▶ dual hexapole design (?)
- ▶ 80-200 kV
- ▶ 100 pm at 200 kV

"C_S correctors" — JEOL STEM & TEM

2007

fourth-order axial geometric aberrations

JEOL ETA on a 300 kV microscope

2010

fifth-order axial geometric aberrations

JEOL Delta on a 60 kV microscope

2007

fourth-order axial geometric aberrations

JEOL ETA on a 300 kV microscope

2010

fifth-order axial geometric aberrations

JEOL Delta on a 60 kV microscope

" C_S correctors" — $\frac{\text{CEOS}}{\text{STEM}}$

2003

third-order axial geometric aberrations

2009

fifth-order axial geometric aberrations

2024

sixth-order axial geometric aberrations

CEOS CESCOR

CEOS DCOR/ASCOR/S-CORR

CEOS LASCOR

" C_S correctors" — $\frac{\text{CEOS}}{\text{STEM}}$

2003

third-order axial geometric aberrations

2009

fifth-order axial geometric aberrations

2024

sixth-order axial geometric aberrations

- triple hexapole design
- monochromator recommended
- allows for beam tilt without resolution loss
- \triangleright ease of use (no D_6)

CEOS DCOR/ASCOR/S-CORR

CEOS LASCOR

CEOS CESCOR

" $C_{\mathcal{S}}$ correctors" — CEOS Demonstration of the corrections of th **TFM**

2003

third-order axial geometric aberrations 2022

fourth-order axial/ second-order off-axial geometric aberrations 2010

fifth-order axial/ third-order off-axial geometric aberrations

CEOS CETCOR

CEOS ATCOR/CETCORPRIME

CEOS BCOR

" C_S correctors" — $\frac{\text{CEOS}}{\text{CONTRACTORS}}$

2003

third-order axial geometric aberrations

2022

fourth-order axial/ second-order off-axial geometric aberrations 2010

fifth-order axial/ third-order off-axial geometric aberrations

- dual hexapole design
- ► 30–300 kV
- enhanced field of view.
- strongly reduced diffraction distortion

- triple hexapole design
- monochromator recommended
- for large field of view

CEOS CETCOR

CEOS ATCOR/CETCORPRIME

CEOS BCOR

" C_S correctors" — $\frac{\text{CEOS}}{\text{CONTRACTORS}}$

special modifications

- ▶ 300 keV 1.2 MeV
- ▶ UHV compatible
- special objective lens adaptions
- "Lorentz" settings
- **•** . .

" C_S/C_C correctors" — CEOS CONTROLL CONTROL CON

TEM

2010

fifth-order axial / third-order off-axial geometric aberrations

first-order axial chromatic aberrations

CEOS CCOR

CEOS GmbH: Overview on commercial aberration correctors

2015

fifth-order axial / third-order off-axial geometric aberrations

first-order axial chromatic aberrations

CEOS SALVE

" C_S/C_C correctors" — JEOL \mathfrak{I}

2025

JEOL C_s/C_c corrector instrument delivery

- no details are publicly known yet
- instrument is being installed now in RFI, Harwell, UK

commercialisation possible but unknown

Some statistics — CEOS (CEOS)

No documented numbers for ☐, dedL☐, or HITACHI

accumulated installations (informed estimates)

- **▶ mion**: ~ 40
- **▶ JEOL 2**: ~ 150
- ▶ HITACHI: ~ 30

Some statistics — CEOS CHARGE STATE OF THE S

No documented numbers for O, dedl. O, or HITACHI

accumulated installations (informed estimates)

- **▶ mion**: ~ 40
- **▶** JEOL **2**: ~ 150
- ▶ HITACHI: \sim 30

C_C/C_S correctors in total

- ► <u>CEOS</u> 🝪: 5
 - +2 in installation
- ▶ JEDL 2: 1 in installation

Thank you for your interest.