Last modified: 21.11.2017
[1] Christian Kisielowski. On the pressing need to address beam–sample interactions in atomic resolution electron microscopy. 51:635--639, 2016. [ bib | DOI ]
[2] T. Tanigaki, T. Akashi, Y. Takahashi, T. Kawasaki, and H. Shinada. Chapter three - quest for ultimate resolution using coherent electron waves: An aberration-corrected high-voltage electron microscope. volume 198 of Advances in Imaging and Electron Physics, pages 69 -- 125. Elsevier, 2016. [ bib | DOI | http ]
[3] Lei Jin, Juri Barthel, Chun-Lin Jia, and Knut W Urban. Atomic resolution imaging of yalo 3: Ce in the chromatic and spherical aberration corrected pico electron microscope. Ultramicroscopy, 176:99--104, 2017. [ bib | DOI ]
[4] K W Urban, J Mayer, J R Jinschek, M J Neish, N R Lugg, and L J Allen. Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope. Physical review letters, 110:185507, May 2013. [ bib | DOI ]
[5] Stephan Uhlemann, Heiko Müller, Peter Hartel, Joachim Zach, and Max Haider. Thermal magnetic field noise limits resolution in transmission electron microscopy. Physical review letters, 111(4):046101, 2013. [ bib | DOI ]
[6] Ryo Ishikawa, Stephen J. Pennycook, Andrew R. Lupini, Scott D. Findlay, Naoya Shibata, and Yuichi Ikuhara. Single atom visibility in stem optical depth sectioning. Applied Physics Letters, 109(16):163102, Oct 2016. [ bib | DOI | http ]
[7] Florian F. Krause, Marco Schowalter, Tim Grieb, Knut Müller-Caspary, Thorsten Mehrtens, and Andreas Rosenauer. Effects of instrument imperfections on quantitative scanning transmission electron microscopy. Ultramicroscopy, 161:146–160, Feb 2016. [ bib | DOI | http ]
[8] Martin Linck, Peter Hartel, Stephan Uhlemann, Frank Kahl, Heiko Müller, Joachim Zach, Max. Haider, Marcel Niestadt, Maarten Bischoff, Johannes Biskupek, and et al. Chromatic aberration correction for atomic resolution tem imaging from 20 to 80 kv. Physical Review Letters, 117(7), Aug 2016. [ bib | DOI | http ]
[9] Andrew B. Yankovich, Alexander V. Kvit, Xing Li, Fan Zhang, Vitaliy Avrutin, Huiyong Liu, Natalia Izyumskaya, Ümit Özgür, Brandon Van Leer, Hadis Morkoç, and et al. Thickness variations and absence of lateral compositional fluctuations in aberration-corrected stem images of InGaN LED active regions at low dose. Microsc Microanal, 20(03):864–868, Mar 2014. [ bib | DOI | http ]
[10] Yuanyuan Zhu, Chengyu Song, Andrew M. Minor, and Haiyan Wang. Cs-corrected scanning transmission electron microscopy investigation of dislocation core configurations at a srtio3/mgo heterogeneous interface. Microsc Microanal, 19(03):706–715, May 2013. [ bib | DOI | http ]
[11] B. D. Forbes, L. Houben, J. Mayer, R. E. Dunin-Borkowski, and L. J. Allen. Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy. Ultramicroscopy, 147:98--105, Dec 2014. [ bib | DOI | http ]
[12] S. McVitie, D. McGrouther, S. McFadzean, D. A. MacLaren, K. J. O'Shea, and M. J. Benitez. Aberration corrected lorentz scanning transmission electron microscopy. Ultramicroscopy, 152:57--62, May 2015. [ bib | DOI | http ]
[13] Stephan Uhlemann, Heiko Müller, Joachim Zach, and Max Haider. Thermal magnetic field noise: electron optics and decoherence. Ultramicroscopy, 151:199--210, Apr 2015. [ bib | DOI | http ]
[14] Kaname Yoshida, Johannes Biskupek, Hiroki Kurata, and Ute Kaiser. Critical conditions for atomic resolution imaging of molecular crystals by aberration-corrected hrtem. Ultramicroscopy, 159 Pt 1:73--80, Dec 2015. [ bib | DOI | http ]
[15] Nestor J. Zaluzec. The influence of cs/cc correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy. Ultramicroscopy, 151:240--249, Apr 2015. [ bib | DOI | http ]
[16] Tetsuya Akashi, Yoshio Takahashi, Toshiaki Tanigaki, Tomokazu Shimakura, Takeshi Kawasaki, Tadao Furutsu, Hiroyuki Shinada, Heiko Müller, Maximilian Haider, Nobuyuki Osakabe, and et al. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution. Applied Physics Letters, 106(7):074101, Feb 2015. [ bib | DOI | http ]
[17] David C. Bell, Max Mankin, Robert W. Day, and Natasha Erdman. Successful application of low voltage electron microscopy to practical materials problems. Ultramicroscopy, 145:56--65, Oct 2014. [ bib | DOI | http ]
[18] C. B. Boothroyd, M. S. Moreno, M. Duchamp, A. Kovács, N. Monge, G. M. Morales, C. A. Barbero, and R. E. Dunin-Borkowski. Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide. Ultramicroscopy, 145:66--73, Oct 2014. [ bib | DOI | http ]
[19] Robert Hovden, Peter Ercius, Yi Jiang, Deli Wang, Yingchao Yu, Héctor D. Abruña, Veit Elser, and David A. Muller. Breaking the crowther limit: combining depth-sectioning and tilt tomography for high-resolution, wide-field 3d reconstructions. Ultramicroscopy, 140:26--31, May 2014. [ bib | DOI | http ]
[20] Z. Lee, H. Rose, O. Lehtinen, J. Biskupek, and U. Kaiser. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images. Ultramicroscopy, 145:3--12, Oct 2014. [ bib | DOI | http ]
[21] Hongchu Du, Chun-Lin Jia, Lothar Houben, Veronika Metlenko, Roger A. De Souza, Rainer Waser, and Joachim Mayer. Atomic structure and chemistry of dislocation cores at low-angle tilt grain boundary in srtio3 bicrystals. Acta Materialia, 89:344–351, May 2015. [ bib | DOI | http ]
[22] Hongchu Du, Chun-Lin Jia, Joachim Mayer, Juri Barthel, Christian Lenser, and Regina Dittmann. Atomic structure of antiphase nanodomains in fe-doped srtio 3 Films. Advanced Functional Materials, page n/a–n/a, May 2015. [ bib | DOI | http ]
[23] C. L. Jia, S. B. Mi, J. Barthel, D. W. Wang, R. E. Dunin-Borkowski, K. W. Urban, and A. Thust. Determination of the 3d shape of a nanoscale crystal with atomic resolution from a single image. Nat Mater, 13(11):1044--1049, Nov 2014. [ bib | DOI | http ]
[24] Chun-Lin Jia, Lei Jin, Dawei Wang, Shao-Bo Mi, Marin Alexe, Dietrich Hesse, Helena Reichlova, Xavi Marti, Laurent Bellaiche, and Knut W. Urban. Nanodomains and nanometer-scale disorder in multiferroic bismuth ferrite single crystals. Acta Materialia, 82:356–368, Jan 2015. [ bib | DOI | http ]
[25] Shai Mangel, Eran Aronovitch, Andrey N. Enyashin, Lothar Houben, and Maya Bar-Sadan. Atomic-scale evolution of a growing core–shell nanoparticle. Journal of the American Chemical Society, 136(36):12564–12567, Sep 2014. [ bib | DOI | http ]
[26] Xian-Kui Wei, Alexander K. Tagantsev, Alexander Kvasov, Krystian Roleder, Chun-Lin Jia, and Nava Setter. Ferroelectric translational antiphase boundaries in nonpolar materials. Nat Commun, 5:3031, 2014. [ bib | DOI | http ]
[27] Yugang Sun, Yang Ren, Yuzi Liu, Jianguo Wen, John S. Okasinski, and Dean J. Miller. Ambient-stable tetragonal phase in silver nanostructures. Nature Communications, 3:971, Jul 2012. [ bib | DOI | http ]
[28] L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck. Exploiting lens aberrations to create electron-vortex beams. Phys Rev Lett, 111(6):064801, Aug 2013. [ bib ]
[29] Jean-Pierre Baudoin, Joerg R. Jinschek, Chris B. Boothroyd, Rafal E. Dunin-Borkowski, and Niels de Jonge. Chromatic aberration-corrected tilt series transmission electron microscopy of nanoparticles in a whole mount macrophage cell. Microsc Microanal, 19(4):814--820, Aug 2013. [ bib | DOI | http ]
[30] Nicole Frindt, Marco Oster, Simon Hettler, Björn Gamm, Levin Dieterle, Wolfgang Kowalsky, Dagmar Gerthsen, and Rasmus R. Schröder. In-focus electrostatic zach phase plate imaging for transmission electron microscopy with tunable phase contrast of frozen hydrated biological samples. Microsc Microanal, 20(1):175--183, Feb 2014. [ bib | DOI | http ]
[31] Ranjan Ramachandra, Hendrix Demers, and Niels de Jonge. The influence of the sample thickness on the lateral and axial resolution of aberration-corrected scanning transmission electron microscopy. Microsc Microanal, 19(1):93--101, Feb 2013. [ bib | DOI | http ]
[32] Koji Kimoto, Keiji Kurashima, Takuro Nagai, Megumi Ohwada, and Kazuo Ishizuka. Assessment of lower-voltage tem performance using 3d fourier transform of through-focus series. Ultramicroscopy, 121:31--37, Oct 2012. [ bib | DOI | http ]
[33] Dietrich Häussler, Lothar Houben, Stephanie Essig, Mert Kurttepeli, Frank Dimroth, Rafal E. Dunin-Borkowski, and Wolfgang Jäger. Aberration-corrected transmission electron microscopy analyses of gaas/si interfaces in wafer-bonded multi-junction solar cells. Ultramicroscopy, 134:55--61, Nov 2013. [ bib | DOI | http ]
[34] Juan C. Idrobo, Weronika Walkosz, Robert F. Klie, and Serdar Oğüt. Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy. Ultramicroscopy, 123:74--79, Dec 2012. [ bib | DOI | http ]
[35] Ayako Hashimoto and Masaki Takeguchi. In situ observation of pt nanoparticles on graphene layers under high temperature using aberration-corrected transmission electron microscopy. J Electron Microsc (Tokyo), 61(6):409--413, 2012. [ bib | DOI | http ]
[36] Christian Ricolleau, Jaysen Nelayah, Tetsuo Oikawa, Yuji Kohno, Nadi Braidy, Guillaulle Wang, Florian Hue, Lenuta Florea, Véronique Pierron Bohnes, and Damien Alloyeau. Performances of an 80-200 kv microscope employing a cold-feg and an aberration-corrected objective lens. Microscopy (Oxf), 62(2):283--293, Apr 2013. [ bib | DOI | http ]
[37] Seiji Takeda and Hideto Yoshida. Atomic-resolution environmental tem for quantitative in-situ microscopy in materials science. Microscopy (Oxf), 62(1):193--203, Feb 2013. [ bib | DOI | http ]
[38] Maya Bar-Sadan, Juri Barthel, Hadas Shtrikman, and Lothar Houben. Direct imaging of single au atoms within gaas nanowires. Nano Lett, 12(5):2352--2356, May 2012. [ bib | DOI | http ]
[39] M Konno, Y Suzuki, H Inada, and K Nakamura. High-resolution sem observation at the atomic level using a dedicated stem with aberration correction. Journal of Physics: Conference Series, 371:012011, Jul 2012. [ bib | DOI | http ]
[40] Thomas W Hansen and Jakob B Wagner. Environmental transmission electron microscopy in an aberration-corrected environment. Microsc Microanal, 18(4):684--690, Aug 2012. [ bib | DOI | http ]
[41] Stephen J. Pennycook and Christian Colliex. Spectroscopic imaging in electron microscopy. MRS Bulletin, 37:13--18, 0 2012. [ bib | DOI | http ]
[42] P Wang, A I Kirkland, and P D Nellist. Chromatic confocal electron microscopy with a finite pinhole size. Journal of Physics: Conference Series, 371(1):012002, 2012. [ bib | http ]
[43] Simon Hettler, Björn Gamm, Manuel Dries, Nicole Frindt, Rasmus R Schröder, and Dagmar Gerthsen. Improving fabrication and application of zach phase plates for phase-contrast transmission electron microscopy. Microsc Microanal, 18(5):1010--1015, Oct 2012. [ bib | DOI | http ]
[44] David C Bell, Christopher J Russo, and Dmitry V Kolmykov. 40 kev atomic resolution tem. Ultramicroscopy, 114:31--37, Mar 2012. [ bib | DOI | http ]
[45] Johannes Biskupek, Peter Hartel, Maximilian Haider, and Ute Kaiser. Effects of residual aberrations explored on single-walled carbon nanotubes. Ultramicroscopy, 116:1--7, May 2012. [ bib | DOI | http ]
[46] Hwang Su Kim, Zaoli Zhang, and Ute Kaiser. Local symmetry breaking of a thin crystal structure of β-si3n4 as revealed by spherical aberration corrected high-resolution transmission electron microscopy images. J Electron Microsc (Tokyo), 61(3):145--157, 2012. [ bib | DOI | http ]
[47] Xiaobin Zhang, Masaki Takeguchi, Ayako Hashimoto, Kazutaka Mitsuishi, Peng Wang, Peter D Nellist, Angus I Kirkland, Meguru Tezuka, and Masayuki Shimojo. Three-dimensional observation of sio2 hollow spheres with a double-shell structure using aberration-corrected scanning confocal electron microscopy. J Electron Microsc (Tokyo), 61(3):159--169, 2012. [ bib | DOI | http ]
[48] Hua Jiang, Janne Ruokolainen, Neil Young, Tetsuo Oikawa, Albert G. Nasibulin, Angus Kirkland, and Esko I. Kauppinen. Performance and early applications of a versatile double aberration-corrected jeol-2200fs feg tem/stem at aalto university. Micron, 43(4):545--550, March 2012. [ bib | http ]
[49] Joerg R. Jinschek, Emrah Yucelen, Bert Freitag, Hector A. Calderon, and Andy Steinbach. Still “plenty of room at the bottom” for aberration-corrected tem. Microscopy Today, 19(03):10--14, 2011. [ bib | http ]
[50] Earl J Kirkland. On the optimum probe in aberration corrected adf-stem. Ultramicroscopy, 111(11):1523--1530, Nov 2011. [ bib | DOI | http ]
[51] Michaël Texier and Jany Thibault-Pénisson. Optimum correction conditions for aberration-corrected hrtem sic dumbbells chemical imaging. Micron, 43(4):516 -- 523, 2012. <ce:title>Advancing HR-TEM and HR-STEM</ce:title>. [ bib | DOI | http ]
[52] Jong Min Yuk, Jungwon Park, Peter Ercius, Kwanpyo Kim, Daniel J Hellebusch, Michael F Crommie, Jeong Yong Lee, A. Zettl, and A. Paul Alivisatos. High-resolution em of colloidal nanocrystal growth using graphene liquid cells. Science, 336(6077):61--64, Apr 2012. [ bib | DOI | http ]
[53] Björn Gamm, Holger Blank, Radian Popescu, Reinhard Schneider, André Beyer, Armin Gölzhäuser, and Dagmar Gerthsen. Quantitative high-resolution transmission electron microscopy of single atoms. Microsc Microanal, 18(1):212--217, Feb 2012. [ bib | DOI | http ]
[54] Andrew R Lupini and Niels de Jonge. The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy. Microsc Microanal, 17(5):817--826, Oct 2011. [ bib | DOI | http ]
[55] Ranjan Ramachandra and Niels de Jonge. Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy. Microsc Microanal, 18(1):218--228, Feb 2012. [ bib | DOI | http ]
[56] N. Alem, R. Erni, C. Kisielowski, P. Rossell, M. D.and Hartel, B. Jiang, W. Gannett, and A. Zettl. Vacancy growth and migration dynamics in atomically thin hexagonal boron nitride under electron beam irradiation. physica status solidi (RRL) - Rapid Research Letters, 5(8):295–297, 2011. [ bib | DOI ]
[57] B. Barton, D. Rhinow, A. Walter, R. Schröder, G. Benner, E. Majorovits, M. Matijevic, H. Niebel, H. Müller, M. Haider, M. Lacher, S. Schmitz, P. Holik, and W. Kühlbrandt. In-focus electron microscopy of frozen-hydrated biological samples with a boersch phase plate. Ultramicroscopy, 111(12):1696--1705, Dec 2011. [ bib | DOI | http ]
[58] U. Kaiser, J. Biskupek, J. C. Meyer, J. Leschner, L. Lechner, H. Rose, M. Stöger-Pollach, A. N. Khlobystov, P. Hartel, H. Müller, M. Haider, S. Eyhusen, and G. Benner. Transmission electron microscopy at 20 kv for imaging and spectroscopy. Ultramicroscopy, 111(8):1239--1246, Jul 2011. [ bib | DOI | http ]
[59] Z. Lee, J.C. Meyer, H. Rose, and U. Kaiser. Optimum hrtem image contrast at 20 kv and 80 kv exemplified by graphene. Ultramicroscopy, 112(1):39 -- 46, 2012. [ bib | DOI | http ]
[60] Peng Wang, Gavin Behan, Angus I Kirkland, Peter D Nellist, Eireann C Cosgriff, Adrian J D'Alfonso, Andrew J Morgan, Leslie J Allen, Ayako Hashimoto, Masaki Takeguchi, Kazutaka Mitsuishi, and Masayuki Shimojo. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope. Ultramicroscopy, 111(7):877--886, Jun 2011. [ bib | DOI | http ]
[61] G. Benner, H. Niebel, and G. Pavia. Nano beam diffraction and precession in an energy filtered cs corrected transmission electron microscope. Crystal Research and Technology, 46(6):580--588, 2011. [ bib | DOI | http ]
[62] Nasim Alem, Oleg V. Yazyev, Christian Kisielowski, P. Denes, Ulrich Dahmen, Peter Hartel, Maximilian Haider, Maarten Bischoff, Bin Jiang, Steven G. Louie, and A. Zettl. Probing the out-of-plane distortion of single point defects in atomically thin hexagonal boron nitride at the picometer scale. Phys. Rev. Lett., 106(12):126102, Mar 2011. [ bib | DOI ]
[63] M. Dries, K. Schultheiss, B. Gamm, A. Rosenauer, R. R. Schröder, and D. Gerthsen. Object-wave reconstruction by carbon film-based zernike- and hilbert-phase plate microscopy: a theoretical study not restricted to weak-phase objects. Ultramicroscopy, 111(2):159--168, Jan 2011. [ bib | DOI | http ]
[64] M. Garbrecht, E. Spiecker, K. Tillmann, and W. Jäger. Quantitative atom column position analysis at the incommensurate interfaces of a (pbs)(1.14)nbs(2) misfit layered compound with aberration-corrected hrtem. Ultramicroscopy, 111(3):245--250, Feb 2011. [ bib | DOI | http ]
[65] Takashi Yamazaki, Yasutoshi Kotaka, and Yuji Kataoka. Analysis of eel spectrum of low-loss region using the c(s)-corrected stem-eels method and multivariate analysis. Ultramicroscopy, 111(5):303--308, Apr 2011. [ bib | DOI | http ]
[66] Katrin Schultheiss, Joachim Zach, Bjoern Gamm, Manuel Dries, Nicole Frindt, Rasmus R Schröder, and Dagmar Gerthsen. New electrostatic phase plate for phase-contrast transmission electron microscopy and its application for wave-function reconstruction. Microsc Microanal, 16(6):785--794, Dec 2010. [ bib | DOI | http ]
[67] T.W. Hansen, J.B. Wagner, and R.E. Dunin-Borkowski. Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science. Materials Science and Technology, 26:1338--1344(7), November 2010. [ bib | DOI | http ]
[68] Rolf Erni, Marta D. Rossell, Manh-Thuong Nguyen, Stephan Blankenburg, Daniele Passerone, Peter Hartel, Nasim Alem, Kris Erickson, Will Gannett, and Alex Zettl. Stability and dynamics of small molecules trapped on graphene. Phys. Rev. B, 82(16):165443, Oct 2010. [ bib | DOI ]
[69] Lawrence F. Allard, Maria Flytzani-Stephanopoulos, and Steven H. Overbury. Behavior of au species in au/fe2o3 catalysts characterized by novel in situ heating techniques and aberration-corrected stem imaging. Microscopy and Microanalysis, 16(04):375--385, 2010. [ bib | DOI | http ]
[70] David C. Bell, Christopher J. Russo, and Gerd Benner. Sub-angstrom low-voltage performance of a monochromated, aberration-corrected transmission electron microscope. Microscopy and Microanalysis, 16(04):386--392, 2010. [ bib | DOI | http ]
[71] M. Cheynet, S. Pokrant, S. Irsen, and P. Krüger. New fine structures resolved at the elnes ti-l2,3 edge spectra of anatase and rutile: Comparison between experiment and calculation. Ultramicroscopy, 110(8):1046--1053, Jul 2010. [ bib | DOI | http ]
[72] M. Haider, P. Hartel, H. Müller, S. Uhlemann, and J. Zach. Information transfer in a tem corrected for spherical and chromatic aberration. Microscopy and Microanalysis, 16(04):393--408, 2010. [ bib | DOI | http ]
[73] Sarah J. Haigh, Hidetaka Sawada, Kunio Takayanagi, and Angus I. Kirkland. Exceeding conventional resolution limits in high-resolution transmission electron microscopy using tilted illumination and exit-wave restoration. Microscopy and Microanalysis, 16(04):409--415, 2010. [ bib | DOI | http ]
[74] M J Hÿtch, F Houdellier, F Hüe, and E Snoeck. Dark-field electron holography for the mapping of strain in nanostructures: correcting artefacts and aberrations. Journal of Physics: Conference Series, 241(1):012027, 2010. [ bib | http ]
[75] M Konno, Y Suzuki, H Inada, and K Nakamura. Application of 80-200 kv aberration corrected dedicated stem with cold feg. Journal of Physics: Conference Series, 241(1):012011, 2010. [ bib | http ]
[76] Sorin Lazar, Yang Shao, Lina Gunawan, Riad Nechache, Alain Pignolet, and Gianluigi A. Botton. Imaging, core-loss, and low-loss electron-energy-loss spectroscopy mapping in aberration-corrected stem. Microscopy and Microanalysis, 16(04):416--424, 2010. [ bib | DOI | http ]
[77] Hannes Lichte, Martin Linck, Dorin Geiger, and Michael Lehmann. Aberration correction and electron holography. Microscopy and Microanalysis, 16(04):434--440, 2010. [ bib | DOI | http ]
[78] Jingyue Liu and Lawrence F. Allard. Surface channeling in aberration-corrected scanning transmission electron microscopy of nanostructures. Microscopy and Microanalysis, 16(04):425--433, 2010. [ bib | DOI | http ]
[79] Michael Marko and Harald Rose. The contributions of otto scherzer (1909?1982) to the development of the electron microscope. Microscopy and Microanalysis, 16(04):366--374, 2010. [ bib | DOI | http ]
[80] David J. Smith and Uli Dahmen. Introduction: The otto scherzer special issue on aberration-corrected electron microscopy. Microscopy and Microanalysis, 16(04):365--365, 2010. [ bib | DOI | http ]
[81] P Wang, G Behan, A I Kirkland, and P D Nellist. Experimental setup for energy-filtered scanning confocal electron microscopy (efscem) in a double aberration-corrected transmission electron microscope. Journal of Physics: Conference Series, 241(1):012012, 2010. [ bib | http ]
[82] Huolin L. Xin and David A. Muller. Three-dimensional imaging in aberration-corrected electron microscopes. Microscopy and Microanalysis, 16(04):445--455, 2010. [ bib | DOI | http ]
[83] Feng Yi, Peter Tiemeijer, and Paul M Voyles. Flexible formation of coherent probes on an aberration-corrected stem with three condensers. J Electron Microsc (Tokyo), 59 Suppl 1:S15--S21, Aug 2010. [ bib | DOI | http ]
[84] Juri Barthel, Thomas E. Weirich, Gerhard Cox, Hartmut Hibst, and Andreas Thust. Structure of cs0.5[nb2.5w2.5o14] analysed by focal-series reconstruction and crystallographic image processing. Acta Materialia, 58(10):3764 -- 3772, 2010. [ bib | DOI | http ]
[85] Johannes Biskupek, Joerg R Jinschek, Ulf Wiedwald, Markus Bendele, Luyang Han, Paul Ziemann, and Ute Kaiser. Identification of magnetic properties of few nm sized fept crystalline particles by characterizing the intrinsic atom order using aberration corrected s/tem. Ultramicroscopy, 110(7):820--825, Jun 2010. [ bib | DOI | http ]
[86] C. L. Jia, L. Houben, A. Thust, and J. Barthel. On the benefit of the negative-spherical-aberration imaging technique for quantitative hrtem. Ultramicroscopy, 110(5):500--505, Apr 2010. [ bib | DOI | http ]
[87] Yasutoshi Kotaka. Essential experimental parameters for quantitative structure analysis using spherical aberration-corrected haadf-stem. Ultramicroscopy, 110(5):555--562, Apr 2010. [ bib | DOI | http ]
[88] M. Lentzen. Reconstruction of the projected electrostatic potential in high-resolution transmission electron microscopy including phenomenological absorption. Ultramicroscopy, 110(5):517--526, Apr 2010. [ bib | DOI | http ]
[89] H. Rose. Theoretical aspects of image formation in the aberration-corrected electron microscope. Ultramicroscopy, 110(5):488--499, Apr 2010. [ bib | DOI | http ]
[90] John P. Bradley and Zu Rong Dai. Analytical superstem for extraterrestrial materials research. Meteoritics & Planetary Science, 44(10):1627--1642, 2009. [ bib | DOI ]
[91] Rolf Erni, Marta D. Rossell, and Philip N.H. Nakashima. Optimization of exit-plane waves restored from hrtem through-focal series. Ultramicroscopy, 110(2):151 -- 161, 2010. [ bib | DOI | http ]
[92] M. Haider, P. Hartel, H. Müller, S. Uhlemann, and J. Zach. Current and future aberration correctors for the improvement of resolution in electron microscopy. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences, 367(1903):3665--3682, 2009. [ bib | DOI | http ]
[93] C.L. Jia, L. Houben, A. Thust, and J. Barthel. On the benefit of the negative-spherical-aberration imaging technique for quantitative hrtem. Ultramicroscopy, 110(5):500 -- 505, 2010. Hannes Lichte 65th Birthday. [ bib | DOI | http ]
[94] Hannes Lichte, Dorin Geiger, and Martin Linck. Off-axis electron holography in an aberration-corrected transmission electron microscope. Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences, 367(1903):3773--3793, 2009. [ bib | DOI | http ]
[95] Florence Nelson, Alain C. Diebold, and Robert Hull. Simulation study of aberration-corrected high-resolution transmission electron microscopy imaging of few-layer-graphene stacking. Microscopy and Microanalysis, 16(02):194--199, 2010. [ bib | DOI | http ]
[96] J L Rouviere, F Lançon, K Rousseau, D Caliste, P H Jouneau, and F Fournel. Structure of an incommensurate 90° si grain boundary resolved with the help of a cs-corrector for illumination. Journal of Physics: Conference Series, 209(1):012041, 2010. [ bib | http ]
[97] María Vallet-Regí, Miguel Manzano, José M González-Calbet, and Eiji Okunishi. Evidence of drug confinement into silica mesoporous matrices by stem spherical aberration corrected microscopy. Chem Commun (Camb), 46(17):2956--2958, May 2010. [ bib | DOI | http ]
[98] Jianguo Wen, James Mabon, Changhui Lei, Steve Burdin, Ernie Sammann, Ivan Petrov, Amish B. Shah, Varistha Chobpattana, Jiong Zhang, Ke Ran, Jian-Min Zuo, Satoshi Mishina, and Toshihiro Aoki. The formation and utility of sub-angstrom to nanometer-sized electron probes in the aberration-corrected transmission electron microscope at the university of illinois. Microscopy and Microanalysis, 16(02):183--193, 2010. [ bib | DOI | http ]
[99] J. Zach. Chromatic correction: a revolution in electron microscopy? Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences, 367(1903):3699--3707, 2009. [ bib | DOI | http ]
[100] Zaoli Zhang and Ute Kaiser. Structural imaging of beta-si3n4 by spherical aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy, 109(9):1114--1120, Aug 2009. [ bib | DOI | http ]
[101] H. H. Rose. Future trends in aberration-corrected electron microscopy. Philos Transact A Math Phys Eng Sci, 367:3809--3823, Sep 2009. [ bib | DOI ]
[102] A. R. Lupini, A. Y. Borisevich, J. C. Idrobo, H. M. Christen, M. Biegalski, and S. J. Pennycook. Characterizing the two- and three-dimensional resolution of an improved aberration-corrected STEM. Microsc. Microanal., 15:441--453, Oct 2009. [ bib | DOI ]
[103] L. F. Allard, A. Borisevich, W. Deng, R. Si, M. Flytzani-Stephanopoulos, and S. H. Overbury. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J Electron Microsc (Tokyo), 58:199--212, Jun 2009. [ bib | DOI ]
[104] B. Kabius, P. Hartel, M. Haider, H. Müller, S. Uhlemann, U. Loebau, J. Zach, and H. Rose. First application of Cc-corrected imaging for high-resolution and energy-filtered TEM. J Electron Microsc (Tokyo), 58:147--155, Jun 2009. [ bib | DOI ]
[105] H. H. Rose. Historical aspects of aberration correction. J Electron Microsc (Tokyo), 58:77--85, Jun 2009. [ bib | DOI ]
[106] Angus Kirkland, Lan-Yun Chang, Sarah Haigh, and Crispin Hetherington. Transmission electron microscopy without aberrations: Applications to materials science. Current Applied Physics, 8(3-4):425--428, May 2008. [ bib | DOI ]
[107] H. Inada, L. Wu, J. Wall, D. Su, and Y. Zhu. Performance and image analysis of the aberration-corrected Hitachi HD-2700C STEM. J Electron Microsc (Tokyo), 58:111--122, Jun 2009. [ bib | DOI ]
[108] G. Behan and P. D. Nellist. Optical depth sectioning in the aberration-corrected scanning transmission and scanning confocal electron microscope. Journal of Physics: Conference Series, 126(1):012083+, 2008. [ bib | DOI | http ]
[109] P. D. Nellist, E. C. Cosgriff, G. Behan, and A. I. Kirkland. Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope. Microsc. Microanal., 14:82--88, Feb 2008. [ bib | DOI ]
[110] C. J. Hetherington, L. Y. Chang, S. Haigh, P. D. Nellist, L. C. Gontard, R. E. Dunin-Borkowski, and A. I. Kirkland. High-resolution TEM and the application of direct and indirect aberration correction. Microsc. Microanal., 14:60--67, Feb 2008. [ bib | DOI ]
[111] D. Geiger, H. Lichte, M. Linck, and M. Lehmann. Electron holography with a Cs-corrected transmission electron microscope. Microsc. Microanal., 14:68--81, Feb 2008. [ bib | DOI ]
[112] B. Gamm, K. Schultheiss, D. Gerthsen, and R. R. Schröder. Effect of a physical phase plate on contrast transfer in an aberration-corrected transmission electron microscope. Ultramicroscopy, 108:878--884, Aug 2008. [ bib | DOI ]
[113] Peter Hawkes, editor. Aberration-corrected microscopy, volume 153 of Advances in Imaging and Electron Physics. ACADEMIC PRESS, December 2008. [ bib | http ]
[114] R. F. Klie, C. Johnson, and Y. Zhu. Atomic-resolution STEM in the aberration-corrected JEOL JEM2200FS. Microsc. Microanal., 14:104--112, Feb 2008. [ bib | DOI ]
[115] A. Ziegler, B. Rockel, R. Hegerl, B. Freitag, U. Lücken, and J. M. Plitzko. Aberration-corrected microscopy for structural biology applications. J Microsc, 233:170--177, Jan 2009. [ bib | DOI ]
[116] A. I. Kirkland, S. Haigh, and L. Y. Chang. Aberration corrected tem: current status and future prospects. Journal of Physics: Conference Series, 126(1):012034+, 2008. [ bib | DOI | http ]
[117] K. W. Urban. Studying atomic structures by aberration-corrected transmission electron microscopy. Science, 321:506--510, Jul 2008. [ bib | DOI ]
[118] K. W. Urban. Is science prepared for atomic-resolution electron microscopy? Nat Mater, 8:260--262, Apr 2009. [ bib | DOI ]
[119] C. Kisielowski, B. Freitag, M. Bischoff, H. van Lin, S. Lazar, G. Knippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, M. Haider, S. Uhlemann, H. Müller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E. A. Olson, T. Donchev, E. A. Kenik, A. R. Lupini, J. Bentley, S. J. Pennycook, I. M. Anderson, A. M. Minor, A. K. Schmid, T. Duden, V. Radmilovic, Q. M. Ramasse, M. Watanabe, R. Erni, E. A. Stach, P. Denes, and U. Dahmen. Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-A information limit. Microsc. Microanal., 14:469--477, Oct 2008. [ bib | DOI ]
[120] H. H. Rose. Optics of high-performance electron microscopes. Science and Technology of Advanced Materials, 9(1):014107+, 2008. [ bib | DOI | http ]
[121] R. Erni, S. Lazar, and N. D. Browning. Prospects for analyzing the electronic properties in nanoscale systems by VEELS. Ultramicroscopy, 108:270--276, Feb 2008. [ bib | DOI ]
[122] J. E. Evans, C. Hetherington, A. Kirkland, L. Y. Chang, H. Stahlberg, and N. Browning. Low-dose aberration corrected cryo-electron microscopy of organic specimens. Ultramicroscopy, 108:1636--1644, Nov 2008. [ bib | DOI ]
[123] E. C. Cosgriff, A. J. D'Alfonso, L. J. Allen, S. D. Findlay, A. I. Kirkland, and P. D. Nellist. Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part I: elastic scattering. Ultramicroscopy, 108:1558--1566, Nov 2008. [ bib | DOI ]
[124] Christian Dwyer, Rolf Erni, and Joanne Etheridge. Method to measure spatial coherence of subangstrom electron beams. Applied Physics Letters, 93(2):021115+, 2008. [ bib | DOI | http ]
[125] M. A. O'Keefe. Seeing atoms with aberration-corrected sub-Angstr?m electron microscopy. Ultramicroscopy, 108:196--209, Feb 2008. [ bib | DOI ]
[126] M. Haider, H. Müller, S. Uhlemann, J. Zach, U. Loebau, and R. Hoeschen. Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy, 108:167--178, Feb 2008. [ bib | DOI ]
[127] M. Malac, M. Beleggia, R. Egerton, and Y. Zhu. Imaging of radiation-sensitive samples in transmission electron microscopes equipped with Zernike phase plates. Ultramicroscopy, 108:126--140, Jan 2008. [ bib | DOI ]
[128] various authors. An entire issue of microscopy and microanalysis presents papers from a meeting on materials research in an aberration-free environment. Microscopy and Microanalysis, 14(01), February 2008. [ bib | http ]
[129] J P Morniroli, F Houdellier, C Roucau, J Puiggalí, S Gestí, and A Redja�mia. Lacdif, a new electron diffraction technique obtained with the lacbed configuration and a c(s) corrector: comparison with electron precession. Ultramicroscopy, 108(2):100--15, January 2008. [ bib | DOI ]
[130] D. A. Muller, E. J. Kirkland, M. G. Thomas, J. L. Grazul, L. Fitting, and M. Weyland. Room design for high-performance electron microscopy. Ultramicroscopy, 106:1033--1040, 2006. [ bib | DOI ]
[131] John C. H. Spence. Absorption spectroscopy with sub-angstrom beams: Els in stem. Reports on Progress in Physics, 69(3):725--758, 2006. [ bib | DOI | http ]
[132] E. C. Cosgriff and P. D. Nellist. A Bloch wave analysis of optical sectioning in aberration-corrected STEM. Ultramicroscopy, 107:626--634, Aug 2007. [ bib | DOI ]
[133] C J D Hetherington, D J H Cockayne, R C Doole, J L Hutchison, A I Kirkland, and J M Titchmarsh. Aberration-corrected HREM/STEM for semiconductor research, volume 107 of Springer Proceedings in Physics, pages 177--182. Springer Berlin Heidelberg, 2005. [ bib | DOI ]
[134] R. F. Egerton. Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy, 107:575--586, Aug 2007. [ bib | DOI ]
[135] C. S. Own, W. Sinkler, and L. D. Marks. Prospects for aberration corrected electron precession. Ultramicroscopy, 107:534--542, 2007. [ bib | DOI ]
[136] Christian Dwyer, Angus I. Kirkland, Peter Hartel, Heiko Müller, and Maximilian Haider. Electron nanodiffraction using sharply focused parallel probes. Applied Physics Letters, 90(15):151104+, 2007. [ bib | http ]
[137] Masaki Taya, Tadahiro Kawasaki, and Yoshizo Takai. Cross-sectional image obtained from spherical aberration-free three-dimensional image intensity distribution in transmission electron microscopy. J Electron Microsc (Tokyo), 55(1):27--30, January 2006. [ bib | DOI | http ]
[138] P. D. Nellist, M. F. Chisholm, A. R. Lupini, A. Borisevich, W. H. Sides Jr, S. J. Pennycook, N. Dellby, R. Keyse, O. L. Krivanek, M. F. Murfitt, and Z. S. Szilagyi. Aberration-corrected stem: current performance and future directions. Journal of Physics: Conference Series, 26(1):7--12, 2006. [ bib | DOI | http ]
[139] C. T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, and M. Matijevic. SESAM: exploring the frontiers of electron microscopy. Microsc. Microanal., 12:506--514, Dec 2006. [ bib | DOI ]
[140] P. D. Nellist, G. Behan, A. I. Kirkland, and C. J. D. Hetherington. Confocal operation of a transmission electron microscope with two aberration correctors. Applied Physics Letters, 89(12):124105+, 2006. [ bib | http ]
[141] T. Walther and H. Stegmann. Preliminary results from the first monochromated and aberration corrected 200-kV field-emission scanning transmission electron microscope. Microsc. Microanal., 12:498--505, Dec 2006. [ bib | DOI ]
[142] R. Erni, B. Freitag, P. Hartel, H. Müller, P. Tiemeijer, M. van der Stam, M. Stekelenburg, D. Hubert, P. Specht, and V. Garibay-Febles. Atomic scale analysis of planar defects in polycrystalline diamond. Microsc. Microanal., 12:492--497, Dec 2006. [ bib | DOI ]
[143] D. A. Blom, L. E. Allard, S. Mishina, and M. A. O'Keefe. Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory. Microsc. Microanal., 12:483--491, Dec 2006. [ bib | DOI ]
[144] A. I. Kirkland, R. R. Meyer, and L. Y. Chang. Local measurement and computational refinement of aberrations for HRTEM. Microsc. Microanal., 12:461--468, Dec 2006. [ bib | DOI ]
[145] H. Müller, S. Uhlemann, P. Hartel, and M. Haider. Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc. Microanal., 12:442--455, Dec 2006. [ bib | DOI ]
[146] T. Walther, E. Quandt, H. Stegmann, A. Thesen, and G. Benner. First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope. Ultramicroscopy, 106:963--969, 2006. [ bib | DOI ]
[147] T. Yamazaki, Y. Kotaka, Y. Kikuchi, and K. Watanabe. Precise measurement of third-order spherical aberration using low-order zone-axis Ronchigrams. Ultramicroscopy, 106:153--163, Feb 2006. [ bib | DOI ]
[148] L. Y. Chang, A. I. Kirkland, and J. M. Titchmarsh. On the importance of fifth-order spherical aberration for a fully corrected electron microscope. Ultramicroscopy, 106:301--306, Mar 2006. [ bib | DOI ]
[149] L. Cervera Gontard, L. Y. Chang, R. E. Dunin-Borkowski, A. I. Kirkland, C. J. D. Hetherington, and D. Ozkaya. The application of spherical aberration correction and focal series restoration to high-resolution images of platinum nanocatalyst particles. Journal of Physics: Conference Series, 26(1):25--28, 2006. [ bib | DOI | http ]
[150] N. D. Browning, I. Arslan, R. Erni, J. C. Idrobo, A. Ziegler, J. Bradley, Z. Dai, E. A. Stach, and A. Bleloch. Monochromators and aberration correctors: Taking eels to new levels of energy and spatial resolution. Journal of Physics: Conference Series, 26(1):59--64, 2006. [ bib | DOI | http ]
[151] C. Y. Tang, J. H. Chen, H. W. Zandbergen, and F. H. Li. Image deconvolution in spherical aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy, 106:539--546, Apr 2006. [ bib | DOI ]
[152] M. Lentzen. Progress in aberration-corrected high-resolution transmission electron microscopy using hardware aberration correction. Microsc. Microanal., 12:191--205, Jun 2006. [ bib | DOI ]
[153] K. Tillmann, A. Thust, A. Gerber, M. P. Weides, and K. Urban. Atomic structure of Beta-tantalum nanocrystallites. Microsc. Microanal., 11:534--544, Dec 2005. [ bib | DOI ]
[154] L. Houben, A. Thust, and K. Urban. Atomic-precision determination of the reconstruction of a 90 degree tilt boundary in YBa2Cu3O7-delta by aberration corrected HRTEM. Ultramicroscopy, 106:200--214, Feb 2006. [ bib | DOI ]
[155] Q. M. Ramasse and A. L. Bleloch. Diagnosis of aberrations from crystalline samples in scanning transmission electron microscopy. Ultramicroscopy, 106:37--56, Dec 2005. [ bib | DOI ]
[156] Shinobu Uno, Kazuhiro Honda, Natsuko Nakamura, Miyuki Matsuya, and Joachim Zach. Aberration correction and its automatic control in scanning electron microscopes. Optik, 116(9):438--448, September 2005. [ bib | DOI ]
[157] J. Yamasaki, T. Kawai, and N. Tanaka. A simple method for minimizing non-linear image contrast in spherical aberration-corrected HRTEM. J Electron Microsc (Tokyo), 54:209--214, Jun 2005. [ bib | DOI ]
[158] M. A. O'Keefe, L. F. Allard, and D. A. Blom. HRTEM imaging of atoms at sub-Angstr?m resolution. J Electron Microsc (Tokyo), 54:169--180, Jun 2005. [ bib | DOI ]
[159] J. Yamasaki, H. Sawada, and N. Tanaka. First experiments of selected area nano-diffraction from semiconductor interfaces using a spherical aberration corrected TEM. J Electron Microsc (Tokyo), 54:123--126, Apr 2005. [ bib | DOI ]
[160] H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hambridge, P. Hartel, M. Haider, C. Hetherington, R. Doole, A. Kirkland, J. Hutchison, J. Titchmarsh, and D. Cockayne. Experimental evaluation of a spherical aberration-corrected TEM and STEM. J Electron Microsc (Tokyo), 54:119--121, Apr 2005. [ bib | DOI ]
[161] J. H. Chen, H. W. Zandbergen, and D. V. Dyck. Atomic imaging in aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy, 98:81--97, Jan 2004. [ bib | DOI ]
[162] C. L. Jia, M. Lentzen, and K. Urban. High-resolution transmission electron microscopy using negative spherical aberration. Microsc. Microanal., 10:174--184, Apr 2004. [ bib | DOI ]
[163] K. Tillmann, A. Thust, and K. Urban. Spherical aberration correction in tandem with exit-plane wave function reconstruction: interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microsc. Microanal., 10:185--198, Apr 2004. [ bib | DOI ]
[164] M. Lentzen. The tuning of a Zernike phase plate with defocus and variable spherical aberration and its use in HRTEM imaging. Ultramicroscopy, 99:211--220, Jun 2004. [ bib | DOI ]
[165] B. Freitag, S. Kujawa, P. M. Mul, J. Ringnalda, and P. C. Tiemeijer. Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy, 102:209--214, Feb 2005. [ bib | DOI ]
[166] J. L. Hutchison, J. M. Titchmarsh, D. J. Cockayne, R. C. Doole, C. J. Hetherington, A. I. Kirkland, and H. Sawada. A versatile double aberration-corrected, energy filtered HREM/STEM for materials science. Ultramicroscopy, 103:7--15, Apr 2005. [ bib | DOI ]
[167] H. Rose. Prospects for aberration-free electron microscopy. Ultramicroscopy, 103:1--6, Apr 2005. [ bib | DOI ]
[168] Heiko Müller, Ingo Maßmann, Stephan Uhlemann, Peter Hartel, Joachim Zach, and Maximilian Haider. Aplanatic imaging systems for the transmission electron microscope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 645(1):20 -- 27, 2011. The Eighth International Conference on Charged Particle Optics. [ bib | DOI | http ]
[169] Peng Wang, Gavin Behan, Masaki Takeguchi, Ayako Hashimoto, Kazutaka Mitsuishi, Masayuki Shimojo, Angus I. Kirkland, and Peter D. Nellist. Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope. Phys. Rev. Lett., 104(20):200801, May 2010. [ bib | DOI ]

This file was generated by bibtex2html 1.98.